Abstract- This paper focuses on the colonization of art works by microorganisms and its effects. Fungal ability in production of pigments and organic acids have crucial role in discoloration and degradation of different types of stone in cultural heritage objects. Additionally, stone objects may support novel communities of microorganisms that are active in Biodeterioration process. The problem of deterioration of ancient monuments caused by Microbial agent, of which fungi play an important role in the deterioration. Present investigation focuses on mycobial survey of The cultural heritage of Chhattisgarh and study carried out March 2010 to February 2011. During the investigation period 18 fungal species were isolated from the surface of monument which are Aspergillus, Penicillium, Curvularia, Cladosporium, Fusarium and Rhizopus. reported as dominant fungal type in the site.

Keywords- Biodeterioration, Cladosporium, cultural heritage, Fungi.

INTRODUCTION

The harmful effect by the colonisting of micro-organism on the monuments is scientifically known as biodeterioration. The monuments which are made of value ancient stones like marbles and granite which are affected by the harmful fungal activities fungal species are important agent responsible for damage of monuments. Colonization of microorganisms on monuments and biodeterioration are usually linked to environmental conditions. The most significant parameters affecting microbial growth are represented by physical factors, mainly moisture, temperature, and light, as well as by the chemical nature of the substratum.

Microorganisms always present in nature and affect our daily life directly or indirectly. The aim of the present paper was to study the airborne mycoflora on monument surface and how can minimize the growth of fungi in the surface of precious collection.

MATERIALS AND METHODS

For isolation of surface mycoflora:

During the investigation period PDA media was used for the isolation of microorganisms. Sample were collected from the surface of temple and artifacts of all the months in the sterile polythene bags and prepared the solution in sterilized distilled water. Few drops of sample pour in the petridishes and kept this petridishes at 28±1°C for 7 days for incubation (Grover et.al. 2007). At the end of incubation period fungal colonies were counted, isolated and identified with the help of available literature and finally send this culture to authentic authority: National center of fungal taxonomy Delhi for identification.
For the control of Mycoflora:

For the control of these fungi in vitro 1 antifungal compound sodium penta chloro phenate was used in various concentrations in 150 ml Potato Dextrose Broth medium. Control flask without antifungal compound were also used simultaneously and incubated at 28±1°C for 7 days. All the experiments were performed in triplicates.

Results and Discussion

18 fungal flora were isolated from sampling site. The fungal species were Cladosporium sp. Fusarium Mycelia sterilia Aspergillus, Curvularia, Cladosporium, Mucor, Penicillium Chrysogenum, Rhizopus, Trichoderma, Sepedonium maheshwarianum, Emericella nidulans species were observed. It is found that maximum percentage contribution is observed for Aspergillus niger (22.77), A. fumigatus (9.44), A. scalrotium (9.44), Cladosporium cladosporioides (7.22) followed by A versicolor (5.55), Curvularia lunata (1.66). On the contrary, minimum percentage contribution (0.55) is observed for Dictyochlamydospore, Chaetomella raphigera and Sepedonium maheshwarianum. The results of present investigation revel with various work done by researchers. It was studied by Alka Jain et al., (2008) that Excessive moisture in building materials supports microbial growth. Endolithic lichen and fungal growth can be used to describe the ecophysiological adaptations of them to the environmental extremes of the rock as studied by Bungartz et al. (2004). The biodiversity of soil crust biota from different geographical regions is rather dissimilar and their determination is only rarely based on cultured material in the case of Cyanobacteria, algae and fungi. (Ajit Varma and Francois Buscot 2007). It is also seen the Biogenic weathering is caused by the action of lithobiontic organisms. Homogeneous carbonates are predominantly colonized by endolithic species that actively penetrate the rock substratum independent of already existing pores or fissures. The organisms construct a system of ducts and cavities by active dissolution of the substratum. (Hoppert et al.,2004). Fungi are especially concentrated in stone crusts. They are able to penetrate into the rock material by hyphal growth and biocorrosive activity, due to excretion of organic acids or by oxidation of mi-neral-forming cations, preferably iron and manganese. Their deterioration activities also include discoloration of stone surface, due to the excretion of mela-nin by dematiaceus fungi (W a r s c h e i d and B r a m s, 2000). Biological and mycological investigations are very important part of good conservation and cannot be ignored in modern conservation concept which includes close collaboration between art and science.

The effect of sodium penta chloro phenate on the growth of some selected fungi showed that 2% concentration leathal to most of the fungi, which showed enhanced growth as compared to control. Probably this chemical acted as stimulant for the growth of fungi (Table-1).

Sodium penta chloro phenate was found to be effective in controlling the growth of all the test fungi at 2% concentration. It showed 100% inhibition of the fungal colonies(Photo1). Similar result observed by (Barve and Thakre, 2003) in different antifungal compounds.however, besides the above treatments, environmental control is the basic area of prevention of biodeterioration which if worked out correctly and carefully may have little complications (Unial 1991). Regular cleanliness and proper use of fumigants can control the biodeterioration of monuments with satisfactory results.
TABLE 1

EFFECT OF ANTIFUNGAL COMPOUND ON THE GROWTH OF FUNGI

<table>
<thead>
<tr>
<th>S. N.</th>
<th>Name of test fungi</th>
<th>Growth in Antifungal compound (2%)</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspergillus flavus</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>A. fumigatus</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>A. niger</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Cladosporium cladosporioides</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Photo 1: Selected fungal species in antifungal compound with control
Some microphotographs of isolated fungi

Aspergillus niger

Curvularia lunata

Alternaria alternate

Nigrospora oryzae

ACKNOWLEDGMENT

This study has been carried out with financial support from the Chhattisgarh council of science and technology, Raipur (C.G.).

REFERENCES

Verrucaria rubrocincta Breuss: Implications for biodeterioration and biomineralization. Lichenologist, 36, p. 55–73

